Search results

Search for "AFM cantilever" in Full Text gives 79 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • with 600 nm low-stress (<100 MPa) Si-N films. The sensor chips are 1.6 mm by 3.4 mm, about the size of a standard AFM cantilever chip. The steps are as follows: (a) Superconducting film. We first deposit a 15 nm thick thin film of superconducting Nb60Ti40N by reactive co-sputtering from separate
  • was verified both at room temperature and in a cryogenic environment. Thus, the deposited material is suitably conductive for STM and various electrostatic AFM techniques that require applying a low-frequency voltage to the tip. Mechanical mode Our chips were the same size as an AFM cantilever chip
PDF
Album
Full Research Paper
Published 15 Feb 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • strongly depend on the geometry of the AFM tip [7][8]. For example, the Pt-coated HQ:NSC18/Pt tip (for electrical force modulation AFM probes) and the Cr/Au-coated HQ:NSC16/Cr-Au tip (for tapping mode AFM probes with long AFM cantilever) produced by MikroMasch [9] have estimated nominal tip radii lower
  • very sharp tips that can make a smaller difference in the scanned profile offset at the corners of the characterizer. A method for characterizing blunt tips was also demonstrated. Nanoindentation using four blunt tips on an AFM cantilever was performed in a normal loading process on a soft PVC sheet
  • this measurement, the tip radius profile can be directly determined by the deflection and position signal of the AFM cantilever during contact between that edge surface and the tip end. Our point of interest for determining the tip radius using this standard grate is that the corner edge of the grate
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • N/m (nominal), k = 12–21 N/m (measured)) were used for AFM scans. By simultaneously exciting the AFM cantilever to its first and second resonance (f1 = 160–190 kHz and f2 = 900–1150 kHz, Figure 1c) and applying two distinct control conditions (amplitude modulation (AM) and frequency modulation (FM
PDF
Album
Full Research Paper
Published 05 Oct 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • proportional to the cube amplitude. Conclusion We investigated the purely mechanical coupling capabilities of a typical AFM cantilever. For this purpose, we used a pump set at the frequency difference between two mechanical modes of interest. Repeating the procedure for all possible combinations of the
PDF
Album
Full Research Paper
Published 19 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • plasmonic response. This heating also results in thermal expansion of the element. This expansion will result in deflection of an AFM cantilever scanning the surface. If a sinusoidal voltage is applied to an electrically conducting sample, such as the active plasmonic element discussed here, the resulting
PDF
Album
Full Research Paper
Published 16 Jan 2023

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • optical imaging, the device could be equipped with one or more piezoelectrically excited membranes coupled with a sensing mechanism, such as an AFM cantilever or other type of mechanical sensor (similar stand-alone developments already exist [31][32]). The mechanical response of the membrane could be
PDF
Album
Perspective
Published 09 Dec 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • cutting process. Complex nanostructures with high spreading chord ratios can be scanned using carbon nanotube probes, thus solving the long-standing problem of mapping complex nanostructures. A colloidal probe [12][13] consists of colloidal particles attached to an AFM cantilever to measure the
  • et al. [34] developed a technique based on field emission-induced growth by growing a single metal nanowire at the AFM tip and forming vertically aligned nanowire probes on AFM cantilever beams of different types and force constants. This type of probe has properties such as a high aspect ratio and
  • BDD-AFM probe, which is particularly suitable for complex SPM experiments based on BDD properties. The probe is mainly a conductive BDD sphere attached to an embedded microelectrode at the end of a tipless cantilever beam. The AFM cantilever beam is completely insulated except for the contact pad on
PDF
Album
Review
Published 03 Nov 2022

Quantitative dynamic force microscopy with inclined tip oscillation

  • Philipp Rahe,
  • Daniel Heile,
  • Reinhard Olbrich and
  • Michael Reichling

Beilstein J. Nanotechnol. 2022, 13, 610–619, doi:10.3762/bjnano.13.53

Graphical Abstract
  • for technical reasons. Consequences of this inclined AFM cantilever mount have been identified before, in particular for atomic force microscopy performed in static (“contact”) mode where an effective spring constant [6][7][8] has been introduced and a torque [9][10] as well as load [11] correction
PDF
Album
Full Research Paper
Published 06 Jul 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • characterized by AFM is shown in Figure 1. For the mechanical mapping, the AFM cantilever needs to be calibrated first. During the scanning process, the applied force should be less than 3 nN to prevent cell destruction. For force mapping, 400 force curves were collected for each selected area and at least 30
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • probe a sample surface, as shown in Figure 5a. Measurements were conducted using a Cypher S AFM microscope (Asylum Research, an Oxford Instruments Company, Santa Barbara, CA, USA) with a NCLAu AFM cantilever (NANOSENSORS, Neuchatel, Switzerland) on a silicon sample. This AFM system is equipped with
  • convert between photodiode voltage and cantilever slope. This provides a calibration parameter that remains valid in all measurement circumstances. Analytical model The core of the computational exploration is the partial differential equation (PDE) governing the dynamics of the AFM cantilever. At rest
  • indentation coefficient, and P is the parameter controlling the probe tip geometry. Photothermal excitation of the AFM cantilever is approximated as a pair of opposing bending moments centered at the laser spot location LbD, measured from the base of the cantilever, and separated from each other by the laser
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • done either on the parabolic bias dependence of the AFM deflection [33] or by analyzing the time series response of the AFM deflection to the applied bias [36]. In both analyses, the average contribution of the capacitive coupling of the AFM cantilever to the electrostatic interaction was separated by
PDF
Album
Full Research Paper
Published 06 Oct 2021

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques

  • Berkin Uluutku,
  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 1063–1077, doi:10.3762/bjnano.12.79

Graphical Abstract
  • experiments one observes the deflection of the AFM cantilever as a function of the cantilever base position instead of directly observing stress and strain. From the available observables, one can calculate the tip–sample force and the indentation. In order to account for the AFM probe and sample geometry and
  • . Alternatively, the transfer functions can be fitted to specific viscoelastic models in order to obtain material constants within those models. Illustration of the classical force–distance experiment. The AFM cantilever tip approaches and indents the sample under off-resonance conditions, while the force and
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • vibrational and dynamic properties. The ideal situation for achieving the best contrast in multifrequency or higher-mode AFM would be using AFM cantilevers with higher eigenmode frequencies equal or close to the higher harmonics [28][29][30]. This can be achieved by modifying the AFM cantilever designs. For
  • bimodal AFM [43]. Additionally, in order to have a better understanding of the dynamics of the AFM cantilever in this study, tip–sample force interactions on Au and PS samples are simulated and presented in Supporting Information File 1, Figure S1. In order to study the effect of the length of the
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • on the AFM observables. We thus highly encourage future research on the incorporation of nonlinear viscoelastic analyses into AFM studies. Experimental Simulation of the AFM cantilever was accomplished through a three-eigenmode vibratory model, where each eigenmode has a separate equation of motion
PDF
Album
Full Research Paper
Published 15 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • coin for scale. c) Annotated photograph of the AFM assembly and d) after being mounted inside the chamber of the HIM. Correlative imaging in process on silicon pillars. a) Optical image showing how the AFM cantilever is positioned at the end of a low-profile, overhanging structure, which fits between
PDF
Album
Full Research Paper
Published 26 Aug 2020

Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

  • Cameron H. Parvini,
  • M. A. S. R. Saadi and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 922–937, doi:10.3762/bjnano.11.77

Graphical Abstract
  • using the cantilever stiffness (kc), the minimum deflection offsets (z0, d0), the deflection (d(t)), and the following relations: where kc in Equation 14 is the AFM cantilever stiffness. This data is not used directly in the fit, but can be useful for showing the indentation and force during the
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Jun 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • frequency resolution, with less computational cost and at a faster speed than other similar techniques. This technique is referred to as stochastic atomic force acoustic microscopy (S-AFAM), and the frequency shifts of the free resonance frequencies of an AFM cantilever are used to determine the mechanical
  • observed dynamic behavior for a free AFM cantilever. Modeled values of klever. A BudgetSensors diamond-coated silicon cantilever with 450 μm length and a spring constant of 0.2 N/m was used in this experiment. Funding The work was supported by the Projects LIDTRA LN-295261 and LIDTRA LN2015-254119 of
PDF
Album
Full Research Paper
Published 04 May 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • experiments, is shaker-piezo noise. In most AFM setups, the shaker piezo is located in very close proximity to the AFM cantilever, in order to be able to perform its duties and provide the required excitation to drive the cantilever. However, a shaker piezo with a relatively high voltage amplitude (up to 10 V
PDF
Album
Full Research Paper
Published 13 Mar 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • model. They studied the effect of dimensionless load and the transition parameter on the contact area. They emphasized the importance of the MD model that covers a large area of AFM surveys [5]. Owing to the importance of the AFM cantilever spring constant and its use in calculation of the rupture force
  • of protein bonds and Young’s modulus of nanoparticles, Clifford and Seah determined the AFM cantilever normal spring constant [6]. Korayem and Zakeri studied the effects of different parameters on the times and forces in a 2D manipulation. Using their proposed algorithm, the location of the
  • the resonance frequencies and sensitivity of the AFM cantilever using the modified couple stress theory (MCST). An analytical formulation was derived for natural frequencies by writing the differential equations of cantilever motion. They found that when the dimensionless thickness of beam is less
PDF
Album
Full Research Paper
Published 13 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • manipulation of the NPs was performed with a Bruker Multimode 8 AFM in the PeakForce quantitative nanoscale mechanical characteriztion (PeakForce QNM) mode using a rectangular AFM cantilever (Bruker, RTESPA-300, k = 40 N/m) with a resonance frequency of around 300 kHz. Prior to each manipulation, the samples
  • calculated with the following equation [20]: where k is the cantilever spring constant, f0 is the resonance frequency of the cantilever, Aset is the setpoint amplitude, Apiezo is the drive amplitude, θ is the phase signal and Q is the quality factor of the AFM cantilever. The dissipated power was used as a
PDF
Album
Full Research Paper
Published 06 Jan 2020

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • topography significantly better. Discussion The critical feature of any AFM cantilever is the tip. For general imaging, the quality of the tip is primarily determined by the tip radius and the wear rate of the tip. We need to comment that our tips have a decent sharpness compared to other silicon nitride
PDF
Album
Full Research Paper
Published 29 Nov 2019

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • biomechanical studies [21]. Atomic force acoustic microscopy (AFAM) is a technique based on AFM for nondestructive imaging. This technique operates on a dynamic mode in which the AFM cantilever vibrates upon ultrasound excitation. Accordingly, AFAM shows the ability to measure nanomechanical properties and is
  • surfaces [29][33]. When the probe sensor is in contact with the sample surface, the AFM cantilever directly reflects the vibrations. By modulating the drive frequency and the excitation amplitude used for AFAM imaging, the cantilever is set to adopt to the feedback signal. Finally, by analyzing the
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • contaminants on the surface when measuring the mechanical properties of atomic-sized defects [15][16][17]. Furthermore, the high quality factor of the AFM cantilever that is achieved under UHV conditions can be very beneficial in dynamic AFM modes, as the Q-factor is inversely proportional to the force
  • mechanical properties is the modulation frequency. Thus, care must be taken when choosing the modulation frequency. Conclusion Dynamic AFM measurements were conducted on HOPG surfaces. Both FMM and CR AFM experimental results showed an increase in the amplitude response of the AFM cantilever as the tip slid
PDF
Album
Full Research Paper
Published 03 Jul 2019
Other Beilstein-Institut Open Science Activities